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Abstract
Purpose—To evaluate the relative effectiveness of three previously proposed methods of
performing group independent component analysis (ICA) of functional magnetic resonance imaging
(fMRI) data.

Materials and Methods—Data was generated via computer simulation. Components were added
to a varying number of subjects between 1 and 20, and inter-subject variability was simulated both
for the added sources and their associated time courses. Three methods of group ICA analyses were
performed: across-subject averaging, subject-wise concatenation, and row-wise concatenation (e.g.
across time courses).

Results—Concatenating across subjects provided the best overall performance in terms of accurate
estimation of the sources and associated time courses. Averaging across subjects provided accurate
estimation (R > 0.9) of the time courses when the sources were present in a sufficient fraction (about
15%) of 100 subjects. Concatenating across time courses was shown not to be a feasible method
when unique sources were added to the data from each subject, simulating the effects of motion and
susceptibility artifacts.

Conclusion—Subject-wise concatenation should be used when computationally feasible. For
studies involving a large number of subjects, across-subject averaging provides an acceptable
alternative and reduces the computational load.
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INTRODUCTION
Independent component analysis (ICA) has been previously proposed as a data-driven
methodology for the analysis of functional magnetic resonance imaging (fMRI) data (1). It
offers the advantages of not requiring the accurate specification of the hemodynamic response
function (HRF), and does not make any assumptions about the nature of the noise. Hence it is
an extremely flexible method well-adapted to “real-life” fMRI conditions of autocorrelated,
or “red” noise, and inter-subject variability in the exact form of the HRF. While, as a data-
driven method, ICA does not provide any built-in means of testing hypotheses and generating
statistical inferences, methods have been proposed to test for significant “active” voxels (2)
and “task-related” timecourses (3).
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Methods have also been proposed to perform group ICA analyses and to generate random-
effects statistical inferences. The simplest and most intuitive method is to perform ICA on the
data from each subject separately, and then perform random-effects analyses on the results
(4). The difficulty is that an ad hoc subjective matching of the component maps must be
performed. Mis-match of the component maps will cause severe loss of sensitivity. To
overcome this difficulty, three methods have been proposed, in order of computational
complexity, from smallest to largest: across-subject averaging (5), subject-wise concatenation
(6), and row-wise concatenation (across time courses) (7). The methods will be described in
more detail below.

Assuming that there are n voxels in the brain, m # of points in the voxel time courses, and N
number of subjects, in the (single-subject) noisy ICA model, the data for each subject X is
assumed to be a linear mixing of p (p < m) independent components: X = A S + E, where X is
the n-X-m data matrix, A is a p-X-m mixing matrix, S is an n-X-p matrix of p spatially
independent sources, and E is an n-X-m matrix of residuals, assumed to be noise. The ith column
of A consists of the time course associated with the ith row of S. The ICA algorithm is explained
in more detail elsewhere (1,8–10). Typically the data is preprocessed by reducing the
dimensionality to an n-X-p matrix via PCA. Using either a gradient-ascent or a fixed-point
iterative algorithm, the unmixing matrix W = A+ is found which corresponds to, equivalently,
maximizing the likelihood (11), minimizing the mutual information (9), or minimizing the
entropy (10).

For across-subject averaging (5), the data is averaged across the N subjects, and the PCA
reduction and ICA decomposition performed. While the component maps may be used directly,
they do not provide any statistical inferences. However, the associated time courses found may
be subsequently used in a conventional General Linear Model (GLM) approach (on a separate
dataset from the one used to find the time courses) in order to generate voxelwise random-
effects statistical inferences.

For subject-wise concatenation (6), the data from the ith subject is reduced via PCA to an n-
X-pi matrix (the number of retained components may vary between subjects), and the data from

all subjects are concatenated into an matrix. A second PCA reduction further
reduces the data into an n-X-p matrix, and the ICA decomposition is then performed. To
generate random-effects inferences, individual subject maps are back-reconstructed by
partitioning the 2nd PCA decomposition matrix into sub-matrices corresponding to each
subject. Time courses for each subject Ai may be obtained via Ai = XiSST(SST)−1, where Xi is
the (unreduced) data matrix from the ith subject. Random-effects inferences may thus be
generated for the time courses as well as the voxel activation maps. The 2nd PCA decomposition
may be quite computationally intensive for studies with larger numbers of subjects; iterative
PCA algorithms (12) may be useful.

For row-wise concatenation (7), all data is row-wise concatenated into an nN-X-m matrix, PCA
reduced to an nN-X-p matrix, and the ICA decomposition performed. A single set of associated
time courses is generated. Individual subject maps are obtained by column-wise partitioning
the nN-X-p source matrix, and random-effects analyses may thus be performed. The method
is highly computationally intensive; however, stochastic (9) or batch-mode (10) versions of
ICA algorithms may be used to ease the computational load.

MATERIALS AND METHODS
All simulations were performed via routines written in IDL (Research Systems Inc., Boulder,
CO). Group fMRI data was simulated for a dataset of 20 subjects, 10,000 voxels in the brain,
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and 100 time points. A zero-mean Gaussian noise background with unity standard deviation
was generated. Simulated independent components were generated using the square of a
Gaussian distribution, keeping the original sign. The simulated source distributions were thus
highly super-Gaussian, corresponding to the empirically observed super-Gaussian nature of
sources present in fMRI data. The source distributions were normalized to a standard deviation
of 0.5. The associated time courses for all sources were generated from a zero-mean Gaussian
distribution with a standard deviation of unity. The scaling factors were chosen so that, at the
tails of the source distributions (p < 0.01), the strength of the simulated BOLD signal intensity
was approximately twice the background noise level, an empirically observed typical level for
fMRI scans performed at 3 Tesla. To model inter-subject variability, Gaussian noise with a
standard deviation of 0.25 was added to each source and associated time course. Twenty sources
were simulated, and added to a varying number of subjects between 1 and 20. Each method of
group ICA analysis was then performed. The data was reduced to 25 components via PCA
prior to the fastICA algorithm (10) being employed. For the subject-wise concatenation, the
data was also reduced to 25 components per subject prior to concatenation. Twenty-five
components were kept at each PCA reduction stage, rather than the twenty known to be present
in the data, in order to simulate real-life conditions which might dictate retaining more principal
components than the (unknown) number of sources present. The simulation was repeated 200
times, with the effectiveness of each method scored by matching up each of the original
components to the corresponding found component with the lowest mean-squared error (after
appropriate scaling); and calculating the average mean-squared error between the original
components and the corresponding found components and the average cross-correlation value
between the found and the original associated time courses, as a function of the number of
subjects with the given independent component.

The simulation was then repeated, but with five additional components generated and added
to each subject in the same manner as above. These components were added in order to model
a different source of inter-subject variability; namely, individual subjects having components
not present in others. Empirically, due to unique sources of motion and susceptibility artifacts,
unique sources are often present in fMRI data. Finally, in order to simulate the performance
of the group ICA algorithms in a study with a larger N, the simulation including the unique
sources was repeated for across-subject averaging and subject-wise concatenation only with
N = 100.

RESULTS
For the simulation without any individual unique components added (Figure 1), the
performance of all three methods was comparable. When the sources were present in fewer
subjects (< 10), subject-wise concatenation performed significantly better in terms of
estimating the component maps. When the simulation was repeated with the individual unique
components (Figure 2), however, the results were dramatically different. Row-wise
concatenation performed very poorly even for the independent component present in all 20
subjects, while subject-wise concatenation performed almost as well as in the simulation
without unique components. While significant degradation was seen in the performance of
across-subject averaging, the time courses were still estimated very accurately (R > 0.9) for
the components present in 10 or more subjects. The high degree of accuracy in the estimation
of the time courses would make across-subject averaging a feasible method, since the time
courses would then be used in a subsequent random-effects GLM analysis to determine
activated voxels. When the number of subjects was increased to 100 (Figure 3), significant
degradation was seen in the performance of subject-wise concatenation only for components
present in very few (<5) subjects relative to the previous simulation with 20 subjects. The
performance of across-subject averaging was also degraded relative to the previous simulation.
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However, the time courses were still estimated accurately (R > 0.9) for the components present
in 15 or more subjects.

DISCUSSION
The results of the simulations are not surprising when the details of each procedure are taken
into account. Subject-wise concatenation should perform the best in most cases in terms of
estimating the component maps, since that algorithm allows for the inclusion of data from an
exclusive subset of subjects where the source is present (i.e. the unmixing matrix elements
corresponding to the data from the other subjects are close to zero). Furthermore, the
performance of the algorithm is not greatly affected by the presence of unique sources in the
individual subjects. For across-subject averaging, however, data from the other subjects has
been averaged into the dataset on which ICA is performed. Thus more noise is present in the
data. Without the unique sources present, the noise mainly affects the accuracy of estimating
the source maps, since the increased noise will be averaged into the final result; the accuracy
of estimating the time courses, however, is not significantly degraded since the increased noise
does not change the optimum value of the unmixing matrix in terms of maximizing the spatial
independence (or nonGaussianity) of the sources. Similar considerations apply to row-wise
concatenation, although the data is averaged to estimate the sources after the ICA
decomposition rather than before. However, the situation changes drastically when the unique
individual sources are added. For across-subject averaging, to some extent, by the Central Limit
theorem, the added sources will average each other out and merely be present as added Gaussian
noise. This appears to be the case for the results in Figure 2, when the source is present in >10
subjects, as the accuracy in estimating the time courses is comparable to subject-wise
concatenation. The accuracy in estimating the time courses falls rapidly as the number of
subjects with a given source falls below 10, as the nonGaussianity of the given source begins
to compete with the residual nonGaussianity of the unique sources. The performance of row-
wise concatenation is extremely poor, because the nonGaussianity of the unique sources is not
averaged across subjects and thus each of the unique sources is able to contribute to the total
nonGaussianity of the found source.

It is possible that the presence of unique sources may not pose quite as serious a problem for
group ICA analyses of fMRI data as is present in the simulations. For instance, “activated”
voxels due to motion artifacts may be present in similar locations, e.g., boundaries with areas
outside the head or with cerebrospinal fluid (CSF). Moreover, the magnitude of the spurious
“activation” might not be as large compared to real BOLD activation. However, even for the
simulation without the unique sources, subject-wise concatenation performed superior to row-
wise concatenation. The high computational demand, coupled with the non-robustness to the
presence of unique sources, makes row-wise concatenation an infeasible method in practice of
performing group ICA analyses. Subject-wise concatenation performed the best overall in all
cases and should be the preferred method when the computational load is manageable. It should
however be noted that the inter-subject variability in the associated time courses may render
the interpretation of the results more difficult. For studies with large numbers of subjects, for
which the computational load may be intractable, across-subject averaging provides an
attractive alternative. For the simulation with 100 subjects, accurate (R > 0.9) estimation of
the associated time courses was obtained even for sources present in as few as 15, or 15%, of
all subjects. Since the same degree of accuracy was obtained in the simulation with 20 subjects
for sources present in 10, or 50%, of the subjects, it is reasonable to assume that fraction of
subjects with a given source necessary to provide accurate estimation of the time course will
decrease as a function of the number of subjects in the study. Another advantage of across-
subject averaging is that the associated time courses do not vary between subjects, making
across- and between-subjects random-effects analyses readily feasible using standard GLM
procedures.
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In conclusion, three methods of performing group ICA analyses of fMRI data were compared
using computer simulation. Subject-wise concatenation produced the best overall performance,
although that procedure potentially poses a large computational demand in studies with a large
number of subjects . For studies with a large number of subjects, across-subject averaging
estimated the associated time courses with high accuracy when the sources were present in a
sufficient fraction of subjects, and is thus a viable method, since the time courses may then be
used in a subsequent GLM. Row-wise concatenation was shown to be an infeasible method,
both due to its very large computational demand, and also to its non-robustness when unique
sources are present in individual subjects.
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Figure 1.
Comparison of the accuracy of three methods of group independent component analysis of
simulated fMRI data as a function of the number of subjects containing the given component.
(MSE = mean-squared error between original and estimated sources; Average CC = average
cross-correlation value between original and estimated associated time courses.)
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Figure 2.
Comparison of the accuracy of three methods of group independent component analysis of
simulated fMRI data as a function of the number of subjects containing the given component,
with 5 unique sources added to the data from each subject. (MSE = mean-squared error between
original and estimated sources; Average CC = average cross-correlation value between original
and estimated associated time courses.)
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Figure 3.
Comparison of the accuracy of across-subject averaging with subject-wise concatenation of
group independent component analysis of simulated fMRI data as a function of the number of
subjects containing the given component, with 5 unique sources added to the data from each
subject, and with data generated from 100 total subjects. (MSE = mean-squared error between
original and estimated sources; Average CC = average cross-correlation value between original
and estimated associated time courses.)
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